High Utility Itemset Mining

نویسندگان

  • Sudip Bhattacharya
  • Deepty Dubey
چکیده

Data Mining can be defined as an activity that extracts some new nontrivial information contained in large databases. Traditional data mining techniques have focused largely on detecting the statistical correlations between the items that are more frequent in the transaction databases. Also termed as frequent itemset mining , these techniques were based on the rationale that itemsets which appear more frequently must be of more importance to the user from the business perspective .In this paper we throw light upon an emerging area called Utility Mining which not only considers the frequency of the itemsets but also considers the utility associated with the itemsets. The term utility refers to the importance or the usefulness of the appearance of the itemset in transactions quantified in terms like profit , sales or any other user preferences. In High Utility Itemset Mining the objective is to identify itemsets that have utility values above a given utility threshold. In this paper we present a literature review of the present state of research and the various algorithms for high utility itemset mining. Keywords—Utility mining, High utility itemsets, Constraint based itemset mining, Frequent itemset mining.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Algorithm for High Average-utility Itemset Mining

High utility itemset mining (HUIM) is a new emerging field in data mining which has gained growing interest due to its various applications. The goal of this problem is to discover all itemsets whose utility exceeds minimum threshold. The basic HUIM problem does not consider length of itemsets in its utility measurement and utility values tend to become higher for itemsets containing more items...

متن کامل

A Fuzzy Algorithm for Mining High Utility Rare Itemsets – FHURI

Classical frequent itemset mining identifies frequent itemsets in transaction databases using only frequency of item occurrences, without considering utility of items. In many real world situations, utility of itemsets are based upon user’s perspective such as cost, profit or revenue and are of significant importance. Utility mining considers using utility factors in data mining tasks. Utility-...

متن کامل

A Review of Mining High Utility Itemsets

Recently, high utility pattern or itemset mining has become the most important research issues in data mining. In high utility itemset mining, the profit values for every item are considered. Generating high utility itemsets from a set of transactions in horizontal data format is a common practice. We hereby present the study of issues related to the different structures used and algorithms for...

متن کامل

Continuous Frequent Dataset for Mining High Utility Transactional Database

-Data Mining can be delineated as an action that analyze the data and draws out some new nontrivial information from the large amount of databases. Traditional data mining methods have focused on finding the statistical correlations between the items that are frequently appearing in the database. High utility itemset mining is an area of research where utility based mining is a descriptive type...

متن کامل

A Survey on High Utility Itemset Mining Using Transaction Databases

Data Mining can be delineated as an action that analyze the data and draws out some new nontrivial information from the large amount of databases. Traditional data mining methods have focused on finding the statistical correlations between the items that are frequently appearing in the database. High utility itemset mining is an area of research where utility based mining is a descriptive type ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012